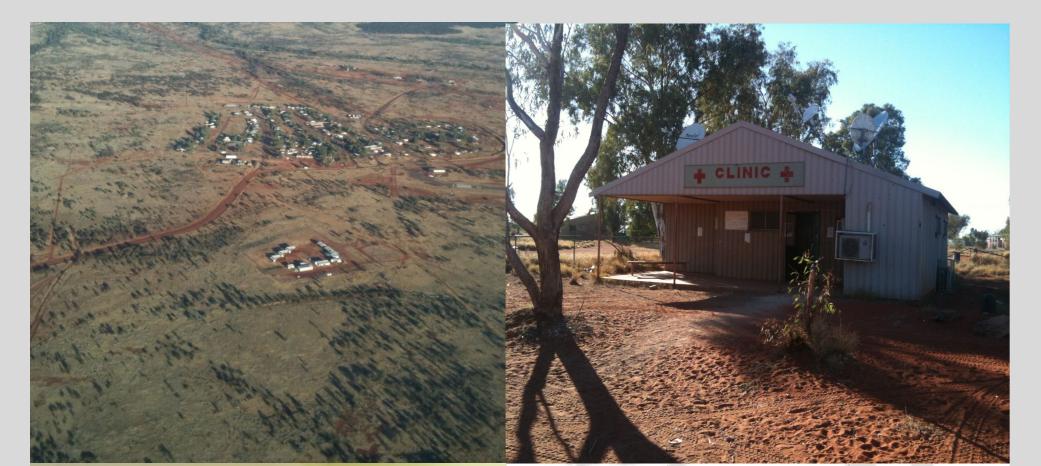


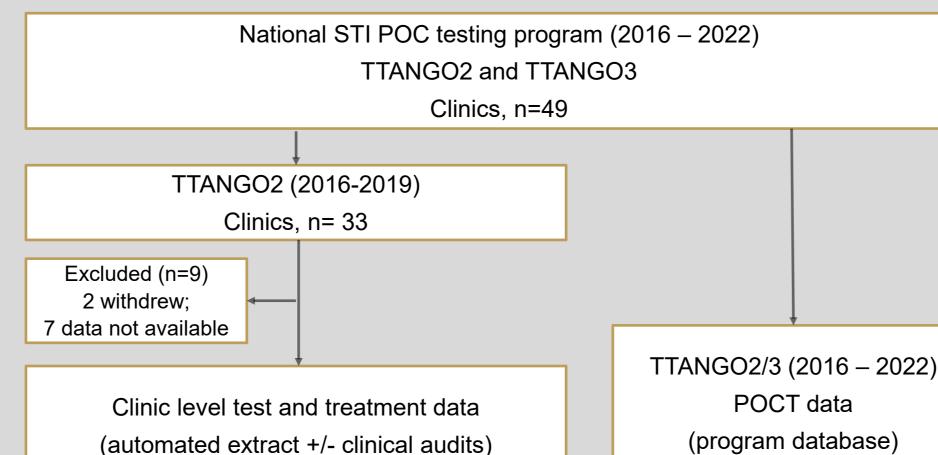
Flinders University International Centre for Point-of-Care Testing

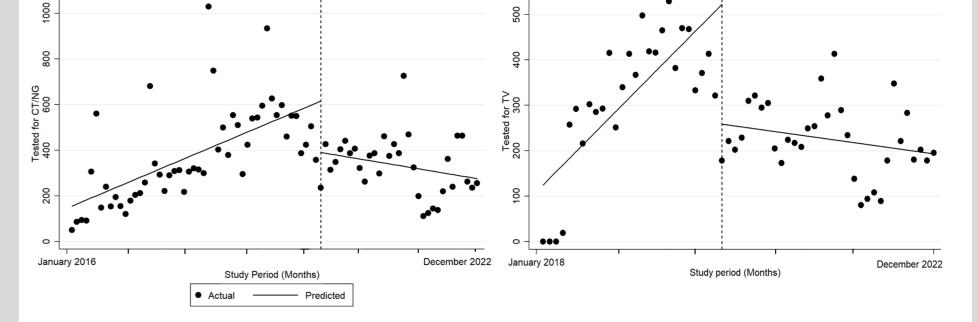
Clinical effectiveness, sustainability and quality of a large, decentralised molecular point-of-care testing network for STIs in regional and remote primary care clinics in Australia


LM Causer¹, K Smith¹, K Andrewartha², H Wand¹, A Saha¹, B Hengel¹, SG Badman¹, A Tangey³, S O'Connor⁴, V Walshe⁵, C White⁵, L Moore⁶, C Carroll⁷, J Leonard⁷, M Gunathilake⁸, T Rees⁹, L Bastian¹⁰, D Mak¹⁰, D Atkinson¹⁰, D Persing¹¹, D Speers¹², L Maher¹, D Regan¹, D Anderson¹³, P Armstrong¹⁰, D Whiley¹⁴, B Donovan¹, C Fairley¹⁵, J Kaldor¹, J Ward¹⁶, M Shephard², R Guy¹, on behalf of the TTANGO2/3 collaboration*

¹Kirby Institute, UNSW Sydney; ²Flinders University International Centre for Point of Care Testing, SA; ³Ngaanyatjarra Health Council of Western Australia; ⁶Aboriginal Medical Service Alliance Northern Territory; ⁷Aboriginal Health Council South Australia; ⁸NT Health; ⁹ SA Health; ¹⁰ WA Health; ¹¹Cepheid, USA; ¹²PathWest, WA; ¹³Burnet Institute, VIC; ¹⁴Centre for Clinical Research, University of Queensland; ¹⁵Melbourne Sexual Health Centre, Melbourne; ¹⁶Poche Centre for Indigenous Health

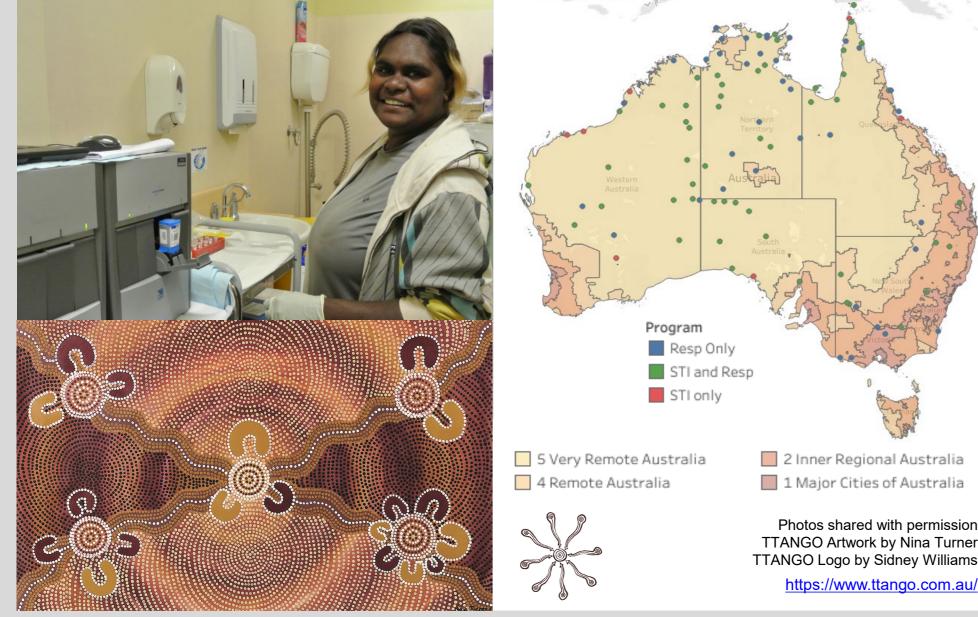
Introduction Results Aim i. Program POCT trends (2016 – 2022) Delays in diagnosis and treatment of STIs • To evaluate the clinical effectiveness, occur frequently in remote communities in sustainability, and quality of STI POCT 46153 patient POC tests performed Australia


- A randomized trial (Test Treat and Go, TTANGO; 2013-2015) in remote clinics demonstrated molecular point-of-care testing (POCT) for chlamydia (CT) and gonorrhoea (NG) improved time to treatment, was accurate, acceptable to stakeholders and cost effective¹⁻⁴
- Since 2016, molecular CT/NG POCT and later trichomoniasis (TV) POCT, has been translated and scaled up to 49 clinics as the national STI POCT program (TTANGO2 and TTANGO3)
- From 2020, molecular detection of SARS-CoV-2 was co-implemented at 105 clinics (Respiratory POCT program),⁵ leveraging existing STI POCT infrastructure


¹Guy et al. Lancet ID 2018, ²Causer et al STI 2018, ³Natoli et al. PLoS One 2015, ⁴Watts et al. IHEA 2021, ⁵Hengel at al. Lancet ID 2020

Methods

- Using routinely collected clinic and Ο programmatic testing data:
- Measure trend in monthly patient POCT
- Compare the proportions of patients with İİ. positive test results treated in < 2, <7 and <120 days by test type (POCT vs laboratory)
- Calculate concordance of patient POC iii. tests with laboratory test results



	Mean number observed POC tests per month (tests/months) (SD)	Estimated regression coefficient (95% CI)			
CT/NG POC tests					
January 2016 - March 2020 [§]	381 (19,413/51) (211)	9.02 (5.74, 12.31)			
April 2020* – December 2022 ^{§§}	336 (10,747/32) (128)	-3.58 (-7.51, 0.35)			
TV POC tests					
January 2018 - March 2020 [¶]	316 (8,535/27) (154)	14.73 (7.17, 22.29)			
April 2020 – December 2022¶¶	226 (7458/32) (79)	-2.04 (-4.70, 0.63)			
§ 32 clinics; §§ 44 clinics; ¶ 28 clinics; ¶¶45 clinics contributing					

Note: Dotted line (April 2020) coincides with Australian public health response to COVID-19 and rapid scale-up and implementation of SARS-COV-2 POCT across the network

ii. Time to treatment (2016 – 2019)

CT/NG positive			Estimated Risk Ratio*	
	Laboratory test P ₀	POC test P ₁	RR=P ₁ /P ₀ (95% CI)	p-valu
Number of clusters	23	23		
% treated same day				
Overall proportions	30% (696/2327)	65% (579/891)		
Mean of cluster proportions (SD§)	0.27 (0.16)	0.60 (0.29)	2.22(1.61, 3.07)	0.004
% treated <u><</u> 2 days				
Overall proportions	31% (721/2327)	68% (609/891)		
Mean of cluster proportions (SD§)	0.31 (0.15)	0.61 (0.28)	1.97(1.48, 2.62)	0.00
% treated <u><</u> 7 days				
Overall proportions	41% (953/2327)	78% (695/890)		
Mean of cluster proportions (SD§)	0.39 (0.17)	0.64 (0.32)	1.64 (1.24, 2.18)	0.02
% treated <u><</u> 120 days				
Overall proportions	77% (1781/2327)	88% (787/890)		
Mean of cluster proportions (SD§)	0.73 (0.25)	0.80 (0.29)	1.10 (0.89, 1.36)	0.384
TV positive				
% treated same day				
Overall proportions (%)	11% (94/872)	35% (99/283)		
Mean of cluster proportions (SD§)	0.10 (0.12)	0.34 (0.32)	3.4 (1.79, 6.47)	0.014
% treated <u><</u> 2 days				
Overall proportions	11% (100/872)	39% (110/283)		
Mean of cluster proportions (SD§)	0.10 (0.13)	0.32 (0.28)	3.20 (1.63, 6.29)	0.021
% treated <u><</u> 7 days				
Overall proportions	19% (169/872)	51% (145/283)		
Mean of cluster proportions (SD [§])	0.20 (0.17)	0.45 (0.33)	2.25 (1.41, 3.58)	0.02
% treated <120 days				
Overall proportions	51% (452/872)	76% (216/283)		
		· · · · · · · · · · · · · · · · · · ·		

Clinics, n=24		Clinics,	n = 49
Time to treatment (positive test and treatment)	Results concordance (both lab and POCT result available)	Monthly POC te (trend a	
Clinical effectiveness	Testing quality	Sustair	nability
Relative risk estimates comparing % treated following laboratory or POC test (cluster level adjusted)	Patient laboratory and POC test result concordance by infection type (kappa statistic)	Trend analysis o by tes (CT/NG	t type

Positive STI test characteristics (2016 – 2019)

CT/NG	Total	Lab test	POC test	P value
Sex				<0.001
Male (%)	1290 (40.3%)	889 (38.2%)	401 (45.9%)	
Female (%)	1910 (59.7%)	1437 (61.8%)	473 (54.1%)	
Age (years)				0.78 [§]
Mean (SD)	24.1 (8.3)	24.1 (8.4)	24.0 (8.1)	
Age group				0.44
16-29 years (%)	2514 (78.9%)	1843 (79.2%)	671 (77.9%)	
<u>≥</u> 30 years (%)	674 (21.1%)	484 (20.8%)	190 (22.1%)	
§t-test				

*Overall median age is 22 [interquartile range (IQR) 18-28] years; no difference was found in the median age between laboratory and POC test (p>0.05).

iii. Result concordance (2016 – 2019)

		Kappa statistic,			
POC test	Negative	Positive	Total	p-value	
Chlamydia trachomatis (CT)					
Negative	3726	17	3743	0.94, p<0.001	
Positive	23	345	368		
Total	3749	362	4111 (99.0%)		
Neisseria gonorrhoea (NG)					
Negative	3773	8	3781	0.95, p<0.001	
Positive	20	309	329		
Total	3793	317	4110 (99.3%)		
Trichomonas vaginalis (TV)					
Negative	2046	25	2071	0.95, p<0.001	
Positive	2	298	300		
Total	2048	323	2371 (99.1%)		

Conclusions

- Molecular POCT for STIs is sustainable and scalable in primary care as part of a routinely implemented program
- Clinical effectiveness (2-3 fold increase in % treated < 2 days) and quality (concordance >99%) of POCT was maintained
- In addition to the individual health benefits of earlier treatment (reduced reproductive morbidities), fewer infective days following POCT could contribute to reduced community transmissions and lower prevalence

Additional support (workforce and sustained funding) will be critical to ensure clinic capacity to deliver STI POCT alongside other priority services

TTANGO2/3 is collaboration between academic research institutions, Aboriginal and government health organisations, pathology providers, health services, communities and industry: The Kirby Institute, Monash University, International Centre for Point-of-Care Testing, South Australian Health and Medical Research Institute, Monash University, Deakin University, The Burnet Institute, University of Queensland Centre for Clinical Research, Aboriginal Health Council, Ngaanyatjarra Health Apunipima Cape York Health Council, WA Country Health Service, WA Health, SA Health, NT Health, NT Health, NT Health, NT Health, NT Health, SA Pathology, staff and patients who participated in this program. We acknowledge the contribution of the TTANGO2 Executive and Investigator groups who guided the implementation of the program. We thank and acknowledge the support of Dr Ye Zhang and Dr Lucy Watchirs-Smith from the Kirby Institute who assisted in the data analyses.

This study was funded by NHMRC Partnership Grant (APP1092503), Australian Government Department of Health, WA Health and QLD Health. TTANGO3 is funded by the Australian Government Department of Health and Aged Care.

2 Inner Regional Australia

1 Major Cities of Australia

Photos shared with permission

https://www.ttango.com.au/

TTANGO Artwork by Nina Turner

STI & HIV 2023 World Congress, Chicago July 24 – 27, 2023 For more information, please contact